\(\int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx\) [253]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 152 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\frac {14 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e \sin (c+d x)}{117 a^3 d (e \sec (c+d x))^{3/2}}+\frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {28 i e^2}{117 d (e \sec (c+d x))^{5/2} \left (a^3+i a^3 \tan (c+d x)\right )} \]

[Out]

14/117*e*sin(d*x+c)/a^3/d/(e*sec(d*x+c))^(3/2)+14/39*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE
(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+2/13*I/d/(e*sec(d*x+c))^(1/2)/(a+I*a*
tan(d*x+c))^3+28/117*I*e^2/d/(e*sec(d*x+c))^(5/2)/(a^3+I*a^3*tan(d*x+c))

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3583, 3581, 3854, 3856, 2719} \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\frac {28 i e^2}{117 d \left (a^3+i a^3 \tan (c+d x)\right ) (e \sec (c+d x))^{5/2}}+\frac {14 e \sin (c+d x)}{117 a^3 d (e \sec (c+d x))^{3/2}}+\frac {14 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 i}{13 d (a+i a \tan (c+d x))^3 \sqrt {e \sec (c+d x)}} \]

[In]

Int[1/(Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^3),x]

[Out]

(14*EllipticE[(c + d*x)/2, 2])/(39*a^3*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (14*e*Sin[c + d*x])/(117*a
^3*d*(e*Sec[c + d*x])^(3/2)) + ((2*I)/13)/(d*Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^3) + (((28*I)/117)*e^
2)/(d*(e*Sec[c + d*x])^(5/2)*(a^3 + I*a^3*Tan[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3583

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {7 \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx}{13 a} \\ & = \frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {28 i e^2}{117 d (e \sec (c+d x))^{5/2} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {\left (35 e^2\right ) \int \frac {1}{(e \sec (c+d x))^{5/2}} \, dx}{117 a^3} \\ & = \frac {14 e \sin (c+d x)}{117 a^3 d (e \sec (c+d x))^{3/2}}+\frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {28 i e^2}{117 d (e \sec (c+d x))^{5/2} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {7 \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{39 a^3} \\ & = \frac {14 e \sin (c+d x)}{117 a^3 d (e \sec (c+d x))^{3/2}}+\frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {28 i e^2}{117 d (e \sec (c+d x))^{5/2} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {7 \int \sqrt {\cos (c+d x)} \, dx}{39 a^3 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = \frac {14 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e \sin (c+d x)}{117 a^3 d (e \sec (c+d x))^{3/2}}+\frac {2 i}{13 d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3}+\frac {28 i e^2}{117 d (e \sec (c+d x))^{5/2} \left (a^3+i a^3 \tan (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.18 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.95 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\frac {\sqrt {e \sec (c+d x)} (i \cos (3 (c+d x))+\sin (3 (c+d x))) \left (62+176 \cos (2 (c+d x))+114 \cos (4 (c+d x))-56 e^{4 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+126 i \sin (2 (c+d x))+105 i \sin (4 (c+d x))\right )}{468 a^3 d e} \]

[In]

Integrate[1/(Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^3),x]

[Out]

(Sqrt[e*Sec[c + d*x]]*(I*Cos[3*(c + d*x)] + Sin[3*(c + d*x)])*(62 + 176*Cos[2*(c + d*x)] + 114*Cos[4*(c + d*x)
] - 56*E^((4*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))
] + (126*I)*Sin[2*(c + d*x)] + (105*I)*Sin[4*(c + d*x)]))/(468*a^3*d*e)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 527 vs. \(2 (156 ) = 312\).

Time = 8.70 (sec) , antiderivative size = 528, normalized size of antiderivative = 3.47

method result size
default \(-\frac {2 i \left (7 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+5 i \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )-36 \left (\cos ^{7}\left (d x +c \right )\right )+36 i \left (\cos ^{6}\left (d x +c \right )\right ) \sin \left (d x +c \right )-36 \left (\cos ^{6}\left (d x +c \right )\right )+5 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+13 \left (\cos ^{5}\left (d x +c \right )\right )+21 i \sin \left (d x +c \right )+13 \left (\cos ^{4}\left (d x +c \right )\right )+21 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-21 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+7 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+42 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-42 F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+36 i \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )+21 \sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-21 \sec \left (d x +c \right ) F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )}{117 a^{3} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}}\) \(528\)

[In]

int(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-2/117*I/a^3/d/(cos(d*x+c)+1)/(e*sec(d*x+c))^(1/2)*(7*I*cos(d*x+c)^2*sin(d*x+c)+5*I*sin(d*x+c)*cos(d*x+c)^4-36
*cos(d*x+c)^7+36*I*cos(d*x+c)^6*sin(d*x+c)-36*cos(d*x+c)^6+5*I*cos(d*x+c)^3*sin(d*x+c)+13*cos(d*x+c)^5+21*I*si
n(d*x+c)+13*cos(d*x+c)^4+21*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(
d*x+c)+1))^(1/2)*cos(d*x+c)-21*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(c
os(d*x+c)+1))^(1/2)*cos(d*x+c)+7*I*cos(d*x+c)*sin(d*x+c)+42*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-cs
c(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)-42*EllipticF(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+36*I*cos(d*x+c)^5*sin(d*x+c)+21*sec(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*EllipticE(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)-21*sec(d*x+c)*EllipticF(I*(-csc(d*x+c
)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\frac {{\left (\sqrt {2} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (219 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 302 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 124 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 50 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 9 i\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + 336 i \, \sqrt {2} \sqrt {e} e^{\left (7 i \, d x + 7 i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )\right )} e^{\left (-7 i \, d x - 7 i \, c\right )}}{936 \, a^{3} d e} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/936*(sqrt(2)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(219*I*e^(8*I*d*x + 8*I*c) + 302*I*e^(6*I*d*x + 6*I*c) + 124*
I*e^(4*I*d*x + 4*I*c) + 50*I*e^(2*I*d*x + 2*I*c) + 9*I)*e^(1/2*I*d*x + 1/2*I*c) + 336*I*sqrt(2)*sqrt(e)*e^(7*I
*d*x + 7*I*c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*x + I*c))))*e^(-7*I*d*x - 7*I*c)/(a^3*d
*e)

Sympy [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\frac {i \int \frac {1}{\sqrt {e \sec {\left (c + d x \right )}} \tan ^{3}{\left (c + d x \right )} - 3 i \sqrt {e \sec {\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )} - 3 \sqrt {e \sec {\left (c + d x \right )}} \tan {\left (c + d x \right )} + i \sqrt {e \sec {\left (c + d x \right )}}}\, dx}{a^{3}} \]

[In]

integrate(1/(e*sec(d*x+c))**(1/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

I*Integral(1/(sqrt(e*sec(c + d*x))*tan(c + d*x)**3 - 3*I*sqrt(e*sec(c + d*x))*tan(c + d*x)**2 - 3*sqrt(e*sec(c
 + d*x))*tan(c + d*x) + I*sqrt(e*sec(c + d*x))), x)/a**3

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\int { \frac {1}{\sqrt {e \sec \left (d x + c\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*sec(d*x + c))*(I*a*tan(d*x + c) + a)^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^3} \, dx=\int \frac {1}{\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3} \,d x \]

[In]

int(1/((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^3),x)

[Out]

int(1/((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^3), x)